Monday, June 5, 2017

Three Brothers - a 3D Virtual Assembly



As part of my attempt to learn how to use a 3D CAD program, I have been using my Three Brothers powerboat design as an exercise. Although the design is still under development, I thought that some people may be interested in seeing a stage-by-stage stitch-and-glue assembly sequence.

This assembly sequence is only one of several approaches to stitch-and-glue construction, but most have a common theme of not requiring a strongback or mould set-up. The shape of the boat is determined by the accurate design, marking-out, and cutting-out of the primary parts - if everything is done correctly, the boat assumes the correct three-dimensional shape without a strongback and set of station moulds, greatly increasing the speed of construction.

Three of the six main panels cut from plywood and laid on the floor. The accuracy of the design and cutting of such panels is the key to a successful build.

Two bottom panels stitched together along the stem (bow) and centreline of the bottom. Stitching is carried out with the two panels laying on each other, and when complete, the panels are opened up 'book fashion'. The assembly will sit on the floor as shown, but it is sensible to have some cradles for a project of this size (details will be provided in the plans).
Pre-fabricated bulkheads, frames, and transom are positioned on station marks and loosely sewn into location using cable ties.
Topside panels stitched into position. By this stage the glass-taping of joints will be taking place.

Cabin sides, including coamings, stitched into place.
Longitudinal webs glued and taped into position. Ventilation holes are suggestive only, and may be changed depending on style of emergency flotation employed
Outboard motor splash-well structure added.
Floorboards and other horizontal panels introduced.
Longitudinal deck-beams and roof structure in place.
Fore-deck and aft-deck panels attached.
Plywood cabin roof and front panel of cabin attached.
Gunwales, outer stem, and structural trim around cabin and coaming finish the basic job.
This is a very quick illustration of the basic assembly method. For more detail, I suggest reading Sam Devlin's wonderful book on the subject, "Devlin's Boatbuilding.

Sunday, June 4, 2017

Getting 16 feet Planks from 8 foot Panels...

In 2002/2003 I was becoming increasingly aware of my lack of bench space in the Wynnum workshop.

At one stage we had six boats under construction at one time, and when commencing the planking of a glued-lapstrake (clinker) sailing dinghy, I realised that I simply did not have the bench space to scarph together 8ft x 4ft sheets of plywood into 16ft x 4ft sheets, which had been my standard procedure.

The space being taken up by 16 foot-long panels had been on my mind, but on this occasion the chickens had come home to roost! Necessity being the mother of invention, I experimented with an alternative approach, and the result was highly successful. A recent call for help from a builder in America has brought the subject back to mind, and I thought the method may interest others.

Lapstrake plank patterns laid out on a 16ft x 4ft panel in my first rented workshop - that is a lot of space taken up!
In order to produce accurate planks from separate 8 foot-long sheets of plywood, I decided to capitalise on one of the by-products of my favourite method of spiling (i.e. method of determining plank shapes when laid out on the flat), and that is the production of lattice style spiling battens. You can find this method of spiling in a number of text books, but it is also shown in illustrated form in the instructions which accompany my plans. Here is a brief explanation of the method I use to produce accurate 16 foot-long planks from 8 foot-long sheets of plywood. Not only does this method save bench space in the workshop, but it also allows for more efficient utilisation of the plywood - i.e. less wastage. (click on images to see full detail)

Here is a plank pattern laid on a single 8ft x 4ft sheet of plywood in a manner which produces minimum wastage. The pattern shown uses diagonal truss-type bracing, but I often use rectangles of thin MDF hot-melt glued to achieve the same result more quickly.  See earlier photo above. Trace accurately around the pattern with a sharp pencil or a fine ball-point pen.
Where the pattern crosses the edge of the 8ft x 4ft plywood sheet, carefully and accurately mark the pattern as shown above in red.

Next, mark a line eight times the thickness of the plywood from the edge of the next 8ft x 4ft sheet. This line is drawn to allow for the amount of plywood which will be taken up by the chamferred  edge of the ply to allow for a scarph joint.  In this case, the plywood is 6mm thick, so I have shown the line 48mm from the edge (if using butt-straps or a "Payson Glass Joint", just make sure the marks are clear of the edge of the sheet).  Lay the remaining portion of the plank template on this sheet with the red marks which were added in the previous step inside the line. 
Adjacent to the marks on the pattern, and inside the line marked eight times the distance of the thickness of the ply from the edge (or from the edge itself if using a butt joint), mark the plywood accurately as shown by the black arrow-heads in this drawing. Then trace accurately around the rest of the pattern.
Remove the pattern to leave the tracing on the plywood and mark a line eight times the thickness of the ply beyond the arrow heads. In this case, with 6mm ply, the distance is 48mm (see drawing above). If the joint is a butt, disregard the last mark.
Cut the half planks from each of the 8ft x 4ft panels, and plane an 8:1 scarph on each half of the plank (disregard for butt joints).
Glue the plank halves together using the scarph or a butt-joint and before the epoxy has cured, lay the plank template over the assembly to ensure that the two halves line-up accurately with the full template (ensure that you place waxed paper or plastic sheet between the glued panels and the template to prevent gluing them together).
This procedure is more difficult to illustrate and explain that it is to carry out. I can assure you that with the application of common sense, it is a simple and practical process which will save you time, space, and plywood.

Monday, May 29, 2017

Increasing Sail Area

One of the subjects I deal with frequently in email correspondence is the question of increasing sail-area of that shown on plans. The answer, of course, is that sail-area can be increased as much as you like, but is it advisable?

Here is part of the text of a recent email exchange on this subject which may be of interest:-


I have plans for the First Mate , bought a couple of years back before we bought and started to renovate our workers cottage here in Germany. I am nearing completion of the of the major work on the house and will have time to build the boat for myself and the rapidly growing 2 kids we now have.
We live in a land locked position with several large lakes to sail (10 suare km not to Somerset standards). However the winds are usually very light as a general rule. We can drive to the Netherlands and sail the inland waterways  again this involves making a weekend of the journey. ( 6 hour turnaround). 
The other use will be some trips down several of the main rivers that flow into the north sea. The planned trips back to Denmark and Sweden.
I have looked at and bought several sets of plans but have always come back to the Phoenix III/ First Mate as it will do everything without a fuss. 
Sorry about the long winded explanation.... Could I squeeze  up to 10 square feet more in a lug design? I'm looking for a rig that we can drop very quickly when we sail in the river and for when the kids get older, for them to sail on there own.

The author of this message is a knowledgeable and sensible fellow who was asking about a quite modest increase in sail-area (about 15%), but there are more things to consider than just the increase in area. Below is my reply:-

I can definitely draw you a larger Balance Lug rig, to any increment within reason. The issues are that as the rig area increases, the yard and boom lengths increase as well, and therefore they increase in cross-sectional area and weight, meaning that storage issues become more of a problem and the boat has more weight that needs to be driven by the sails - and so on in a cascading (well, slightly rippling..) manner. In addition, space under the boom becomes an issue, and you need to look at increasing the length and diameter of the mast.

What I put your way for consideration is the standard Balance Lug rig, with the standard spars, but with the heel of the boom pulled aft (I can show you the details of the rigging) almost to the mast, turning the Balance Lug into a Standing Lug. The aft end of the boom cocks up high, helping with room underneath for the helmsperson, and a nice consequence is that as the longer aft part of the boom swings out when eased, it is higher above the water. This helps to prevent the boom end dragging in the water, and sailing the boat over no matter how much the sheet is eased.

Not only does the boom move aft and up, but the centre-of-area also moves aft relative to the centre-of-lateral resistance. This allows one to set a jib to bring the centres back to the correct location, and provides much more boost and windward performance than a larger lug would have done. This is all achieved with virtually zero increase in rig weight and length of spars, as the jib is set flying i.e. not hanked onto a fore-stay. A jib set this way can be flashed out and in an a matter of seconds, and does not require silly roller furlers and such like. You still have the original Balance Lug available in an instant, simply by loosening the boom parrel. If required, you then move to reefing the Balance Lug normally, and there are few rigs better adapted to reefing than a Balance Lug - the Chinese Lug (or Junk) rig being a notable exception.

Let me know your thoughts - I'm happy to draw the bigger lug if that is your preference. I've attached a PDF to show you the idea.



Tuesday, November 29, 2016

New Video of Bolger Hope

We are now getting some time up on the Phil Bolger 'Hope' I built back in 2003. Here is a link to a youtube clip shot on Sunday November 27 2016




Damaged piston and the replacement, complete with new rings

After having suffered an engine seizure due to salt water in the cylinder, David Lillistone (son) and I carried out an overhaul replacing the piston and piston rings, exhaust valve and seat, plus a multitude of other components. In addition, I had a new bronze propeller made by Austral Propellers, with consultation and calculation provided by William Olds and Sons (Olds Engineering) in Maryborough. The service provided by Olds Engineering was exceptional, and they acted on my behalf in dealing with Austral. http://www.olds.com.au/

Three generations of the family worked on the engine overhaul...

The engine is now starting to be run-in, although I believe she will continue to improve for a long time yet. The original propeller was a 12" x 10" re-pitched to 12" x 8". The blades were of the Yanmar pattern, but the replacement is a 12" x 8" from the start, with about a 55% disc- area ratio.

Original Yanmar-pattern propeller....

....and the new Austral prop supplied by Olds Engineering

Performance is continuing to improve with use, but the boat has gone from a top speed of 6.1 knots/7mph to 7.3 knots/8.4mph. That is at maximum engine speed of 3600rpm, but at maximum continuous of 3400rpm continuous speed falls back to about 6 knots/6.9mph and at my preferred cruising speed of 2800rpm, we run at about 5.5 knots/6.3mph. Those 2800rpm speeds are quoted from memory, but I have got them recorded somewhere.

When we are bird-watching, or just cruising the shoreline, or favourite engine speed is 2000rpm - the engine is like a sewing machine and the boat runs at a very pleasant 4.7 knots/5.4mph.


Saturday, November 12, 2016

Up-date - Lugsail Yard Parrels

In my previous post, I presented a hand-drawn illustration of my preferred method of setting up a yard parrel (in this case a Snotter).

The drawing shows the parrel/snotter (drawn in red) simply slipped over the mast and the halyard, but in the text I mentioned that the parrel can be attached to the rolling hitch which secures the halyard to the yard. For the entire time - at least three decades - that I've been using this parrel system, I've always secured the parrel to the halyard or the yard, but when I was preparing the drawing, it occurred to me that it may work simply slipped over the mast and the halyard.

Well, just two days ago I did a rigging job for a man who had built a beautiful Paul Gartside-designed lapstrake (clinker) dinghy. In the process I tried out the method as depicted in the above drawing, and although it worked, the parrel had a tendency to hang-up on the mast due to friction between itself, the mast, and the halyard. I quickly re-rigged it so that it ran under the rolling hitch, and everything was fine.

So lightly attach the snotter to the yard or the halyard where it is secured to the yard. That way, the parrel/snotter will lower positively with the yard.

Sunday, November 6, 2016

Lugsail Yard Parrels

My old boat setting a balance lug, with the yard snugged up against the mast

 A problem which many people encounter when using a balance lug, standing lug, or a Chinese lug, is arranging a method to hold the yard close to the mast.

Some designers advocate a method where the halyard is attached to the yard towards the heel, and then leading along the yard (and around the mast) to a pulley-block at the normal halyard attachment point.

The theory is that as tension comes onto the halyard, it automatically pulls the yard in against the mast. I've tried it, and (for me) it doesn't work. The amount of force holding the yard against the mast is small, and much more importantly, the yard is largely free to move forward and aft through a significant arc.

Here are two photos taken on a day when we tried it on my sailing canoe just for fun, and as you can see, it wasn't worth a cracker!

Yard with the normal halyard attachment point hanging aft by close to a foot

Halyard doing a very poor job of holding the yard close to the mast, even though the downhaul and halyard tensions were high.


Another popular option is to use a loop of line, bronze rod, or stainless-steel rod around the mast somewhat like a conventional mast hoop on the luff of a gaff mainsail. If you follow Jim Michalak's suggestions for a loop of line, it will work OK, but is prone to jamming when the sail is raised. You can confidently follow Jim Michalak's advice about almost anything regarding boats, but in this case I believe there is an even better way.

The metal ring method has problems in that it makes it very difficult to get the yard aft when lowering, until you can reach high enough to lift the yard off the hook which usually forms the attachment to the ring. If the sail is boomless, it may not be too much of an issue - but when a boom is involved, it is very important that the yard is free to move fore and aft while still being attached to the halyard.

The system I prefer is simple, light, and highly effective. Here is a drawing which should be self-explanatory. Click on the drawing for a clearer view.



The loop (shown in red) can be simply dropped around the halyard, or can be attached to the yard by the halyard rolling-hitch. Raising and lowering the sail is no problem, because as soon as the yard is lowered, the loop automatically loosens, and when being raised, the loop is loose until the yard reaches the raised position. If you need to reef, lower the yard to the required position, and simply re-tighten the lower end of the snotter (a.k.a. Yard Parrel) and the yard will be held snugly against the mast. No need to make it tight - just snug.

Below are two photos showing the system in use on a First Mate. In this case, we had the snotter line knotted into the halyard rolling hitch on the yard, but it isn't necessary - the system shown in the previous drawing is fine.

Blue line is the halyard, and the buff-coloured line is the snotter (yard parrel).



The system is simple, light, and reliable. I've used it for years without any problems.




Thursday, July 28, 2016

Phoenix III - Beachcruiser and Daysailer

I've told the story of how I came to design Phoenix III several times previously, but for those who haven't heard it before, the basic details are:-

  • after 45 years of dinghy sailing, I settled on 15ft x 4ft 6ins (to the inside of the planking) as being the best compromise between light-weight and compact size on the one hand, and carrying capacity, speed and capability on the other. All of this viewed in the context of a single-hander, or a two person crew;
  • good rowing geometry and performance;
  • self-rescuing;
  • trailerable;
  • a selection of simple, traditional, interchangeable rigs, all using the same mast step and mast partner.
The very first Phoenix III , beautifully built by Paul Hernes
The original builder, Paul Hernes, from Caloundra, Australia, has used his boat extensively in the more than ten years since initial launching. Paul has done what I encourage everybody to do - he has continually experimented with the various rigs, making changes to the running rigging, and learning the characteristics of his boat. I am indebted to Paul for his feed-back and photos.

Another person to whom I owe a debt of gratitude is Tom Pamperin, from Wisconsin in the United States. Tom has notched up months of cruising time in a Phoenix III built by his brother, Lance. You can read about some of Tom's cruising adventures, and view his superb photos by following these links:-

http://forum.woodenboat.com/showthread.php?186576-A-Phoenix-III-in-Georgian-Bay&p=4422412#post4422412

http://forum.woodenboat.com/showthread.php?134797-A-Phoenix-III-in-the-North-Channel

More recently, Tom and a friend competed in the 2016 "Texas 200", and Tom has kindly written a nice article on the trip. It is a great story and you can see it here: -


A Phoenix III in the Texas 200

by Tom Pamperin
www.tompamperin.com

The Texas 200 is hard to describe. It’s not a race. And it’s not really a group cruise, either. I think of it as more of a multi-day endurance event for small boats: 40 to 50-mile sailing days, strong winds, tricky navigation, intense sun, remote campsites, extreme shallow water, and no shade. There’s some big water, too. Although the route roughly parallels the Intracoastal Waterway, and is sheltered from the open water of the Gulf of Mexico by a series of low barrier islands, it can get rough out on the larger bays. Conditions can be tough enough to be intimidating—or at least exciting—at times. This year, 57 boats started and 29 finished, with just 18 boats making it to every camp along the way. My brother was kind enough to loan me his Phoenix III for the trip so that my friend Pete and I could give it a shot.

Magnolia Beach, Texas—finish line of the Texas 200. (Peter Martens photo)




The sign sets the tone perfectly—this ain’t no marina cruise. Logistics for the Texas 200 can be daunting. Most sailors arrive a day early to drop off their boats at the start (Port Isabel, Texas, a tourist town near the Mexican border), and then drive their car and trailer 5 hours north to the finish line at Magnolia Beach and catch a shuttle bus back to Port Isabel that afternoon—another 5 hours of driving.



Day One: Crossing the Laguna Madre. (Jennifer Votaw Crow photo)



Our trip started out with a long day of surfing along on a broad reach to a run at 5-6 knots for 40 miles non-stop. These are typical Texas 200 conditions, with winds at 20 knots or more in the morning and getting stronger all day, all on the starboard tack. The Phoenix III handled it beautifully, with fingertip control of the tiller and no tendency to broach.

To keep things interesting, the day ended with a 5-6 mile beat up a narrow channel dredged through the barrier island forming the eastern edge of the Laguna Madre, with the campsite located right on the edge of the Gulf of Mexico. More than a few boats quickly abandoned the attempt to beat up the channel; for us in the Phoenix III, it was a simple series of tacks through steep chop—a bit wet, but we never missed a tack and stayed perfectly in control. Pete shot a bit of video at the camp that night to give his family some idea of what the Texas 200 is all about:

On the beach at the Port Mansfield jetties. (Peter Martens video)



 Day Two: More of the Laguna Madre. (Peter Martens video)


More of the same for day two—big wind, broad reach to a run. Continue for 8 hours. Pete shot the brief video on his IPhone while we were surfing along. He’s done some Hobie sailing back in Wisconsin, but I don’t think he had ever seen this kind of sustained surfing before.

Day Three: Northward to Bird Island. (Matt Schiemer photo)


 The photo above shows the campsite for the evening of day three near Bird Island, just outside of Corpus Christi. Another 40 miles on a broad reach to a run to get here—with a side trip to the barrier islands. At one point we were completely surrounded by porpoises, who started launching themselves into full-on aerial leaps all around us. Pete and I were laughing out loud. Later on we “parked” the boat to wait for a sailor who had fallen behind by simply letting the sheet run free, letting the sail weathervane freely while we drifted slowly and peacefully to leeward, broadside to the wind—a nice feature of the Phoenix III’s balance lug rig. 


Day Four: Pete at the helm, entering Corpus Christi Bay.


 The low sheeting loads on the lug rig make expensive blocks and hardware unnecessary—we simply ran the sheet around a horn cleat on the leeward quarter, forward to the oarlock, and back to the helmsman’s hand. Another advantage of such a simple arrangement is that the sheet can be kept much shorter, leaving less line to tangle around the crew’s feet. We also sometimes ran the sheet through a ring on a simple rope traveler over the tiller, another cheap and easy method that’s a bit handier for gybing.

The winds finally relented a bit—down to 20 knots, maybe—so we spent the day under full sail. Today brought the big water and long fetches of Corpus Christie Bay, so we hugged the windward shore, sliding through narrow channels along and around the barrier islands, sailing in water so shallow that, board up, the keel was dragging through the mud. “Deep water” on the Texas coast means water that might get your knees wet if you stepped overboard.

Later in the day we could have cut back into the deep buoyed route of the ICW, but there was a better option for boats like ours: Corpus Christie Bayou. We simply ignored the marked channel and sailed up to a crumbling ramp at the edge of a bridge, lowered the mast to row through, and re-hoisted the sail. From here the route to camp was an exercise in extreme shoal-water sailing, trying to find a twisting channel which had shuffled itself outside of its own markers, forcing us to guess where deeper water might be found.

Again, not a problem in the Phoenix III. Since the channel wasn’t reliable, we simply cut across the flats, sailing along in water so deep that the keel (board up) was once again buried in the mud. We only had to get out and pull the boat along for about thirty yards, and we were through to deeper water and the oyster-shell beach of the Quarantine Shores campsite.


 Camp at Quarantine Shores—plenty of home-built boats, and not much else. (Peter Martens photo)


Day Five: Sailing through the night. (Bill Fisher photo)



Light winds, for Texas at least. We spent the day on a broad reach under full sail, still doing between four and five knots. In the afternoon the winds picked up, shifting eastward far enough to put us close-hauled—the first time since day one that we hadn’t been on a broad reach or a run.

The day ended at Hidden Pass, where we sailed through a cut almost narrow enough to jump from island to the next—with a running start. Maybe. I couldn’t get Pete to try it, so we’ll never know for sure. We did find an alligator skeleton on the beach, so perhaps his reluctance to risk a swim was well-founded.

At camp that night, everyone with radios and smart phones was talking about tomorrow’s weather forecast: very hot, with light winds. “It might not be the dumbest idea to just keep going through the night,” I told Pete. True, there’d be some tricky navigation getting through one of three marked cuts into the next bay—but the moon was nearly full. And we had a good breeze now. It would be a pleasure to sail while it was cool for once; we had been decked out in long sleeves and long pants for days, trying to protect ourselves from the fierce sun.

And so we hung out with the fleet at camp until sunset—right around the time that mosquitoes would have forced a retreat into tents anyway—and then set out across Espiritu Santo Bay, the last big water of the trip. Perfect sailing! A nice 15-knot breeze, cool air, and the fierce red eye of the sun hidden safely below the horizon. I was surprised no other boats came along, but I guess they wanted to see how we did before they tried it for themselves. Maybe next year it’ll become a popular strategy.
The winds picked up as we went, and then suddenly fish began popping out of the sea all around us. Quite remarkable—they would hurl themselves straight up, four or five feet into the air. One of them even jumped over the foredeck.

Then one of them jumped into the boat. And another. Using a boat cushion, I scooped them down toward Pete, who had his hands full already with the tiller and sheet. “Fish in the boat!” I shouted as another one threw itself aboard. “Fish in the boat!” He threw them overboard one by one and mocked me for my timidity. I kept wielding my cushion and pushing them his way.

The rain of fish kept on for half an hour. They were mullets, sleek silvery fish half the length of my forearm, and were no doubt being pursued by bigger, hungrier fish. Porpoises, perhaps. I sympathized with them, but still, I wasn’t letting them stay aboard.

By the time we reached the far shore of the bay on our moonlit sail, we weren’t sure of our exact location. I don’t carry a GPS (I cling to a stubborn curmudgeonly belief that such devices remove many of the rewards of sailing, and make us less skillful and less aware), so we had steered a compass course designed to take us far enough south of our goal that we would know to turn north when we hit the shore.

It worked, kind of. Bumping along northward through the shallows, using the centerboard as a depth sounder, we followed the far shore of the bay until a vague cluster of lights showed up ahead. Somewhere near there would be our cut. We passed a marker buoy from the ICW, but weren’t able to locate the channel itself in the darkness. And then suddenly we had land on both sides of the boat, a development that was difficult to reconcile with the chart, using a tiny red headlamp as the waves tossed the boat this way and that. But eventually, despite the first faint stirrings of seasickness, I was able to get a pretty good guess at where we were.

Which proved wrong in the next moment as we discovered a buoyed channel cutting directly across our path: it was the last of the three channels we had been looking for, and we had found our way successfully through the darkness.

The rest of the night was a quiet sail northward as the winds gradually dropped away, until around 4 a.m. we coasted up onto the beach under oars. Magnolia Beach. If the Texas 200 had been a race (it isn’t), we would have just won. Then again, given how much we had enjoyed our nighttime sail, we had won. Everyone else would be bobbing and baking in hot sun and no wind for hours. Pete and I pulled the boat ashore, set up our tents, and enjoyed a few hours of sleep in the cool air of the morning.


Conclusions: A very good boat. (Peter Martens photo)


 The author and his brother’s boat at the finish line: the beach at Magnolia Beach.

Judging by the results—57 entries, 29 finishers, and only 18 boats (including us) making it to every campsite— this year’s Texas 200 was a tough event for a lot of people. For Pete and me aboard the Phoenix III, it was a pleasure cruise. I’ve put a lot of miles on my brother’s boat, and the more I sail it, the more I like it. Anything I’d be brave enough to try in a small boat, I’d be happy trying in a Phoenix III.

I’ll end by explaining a few of the features of the design that I have really come to appreciate. These may not all be the things that come easily to mind when you’re new to this kind of sailing—they are instead appreciations that have evolved gradually, after many hundreds of miles of cruising under sail and oar, rolling the boat up onto beaches, anchoring off and sleeping aboard, the whole spectrum of cruising life. In short, these are the things I didn’t know enough to want from a boat until I had put in some sea miles.

1. The simple balance lug rig is easy to reef, easy to strike for rowing, docile and well-mannered in use (gybing is particularly simple and stress-free), and allows you to “park” the boat by simply letting the sheet fly so the boat drifts quietly broadside to the waves. It’s also easy to raise the sail anywhere on the starboard tack (if you rig with yard to port as I do)—no need to hold the bow precisely into the wind as on a Marconi rig (and thus no need for the complications of a mizzen). And the mast is simple to drop if you need to slip under a low bridge.

2. Capsize recovery. My brother and I tested this on a windy day (20 knots+) and found it EXTREMELY difficult to capsize this boat, even on purpose. But when we did (after leaning 400+ pounds over the leeward gunwale for 20 seconds), it was easy to right and re-board—so easy I’m confident I can do it for real if the situation ever comes up. And the centerboard design puts the top of the case well above the water level, meaning the boat can be bailed dry without taking in more water through the case.

3. Sleeping platform. The optional set-up for sleeping aboard works well for two sailors, and is luxurious (by backpacker standards) for a solo sailor. Simply carry an extra plank under each side bench and the entire width of the boat becomes a comfortable sleeping space. A simple tarp on a line from mast to rudder head makes a good boom tent to keep you dry. I’ve switched almost entirely to sleeping aboard because of how simple and comfortable it is.

4. Good rowing performance. The Phoenix III is no racing shell, but I was able to outrun a Hobie with a pedal-powered Mirage drive for an hour while rowing at a pace slightly faster than my all-day endurance pace. This boat makes rowing a pleasure rather than an ordeal.

5. Good windward ability. Gentlemen don’t sail to windward—except sometimes you have to. The Phoenix III keeps up good speed and points well, and the fine entry and wide gunwales make it a fairly dry ride.

6. Glued lapstrake plywood construction. I’d rather be sailing than sanding and fairing, and lapstrake is probably the quickest and most pleasant route to get there if you’re building a new boat. It also makes for a stiff, strong, lightweight hull.

But the best feature of the Phoenix III—a quality I have not often seen to this degree in other designs—is less quantifiable: it’s just right. The layout and proportions feel natural; it all works, in a very practical and user-friendly way. This is a boat that seems to have been designed by someone who actually goes cruising, and has thought a lot about what works and what doesn’t. The thwart divides the boat neatly into stowage (forward) and living areas (aft). The anchor bucket fits easily along the forward bulkhead alongside the mast. Large duffel bags stow neatly alongside the centerboard case, held in place under the thwart—it’s much easier to carry a couple of bags ashore than it is to dig through small hatches. The bags also increase flotation if the boat is swamped or capsized.

In fact, the ergonomics of this boat work so well that even two large (6’ 2”) adults can fit comfortably aboard for a long cruise. And sailing solo, the helmsman can slide fore and aft along the side benches, moving all the way forward to the thwart for windward work, and sliding back to the sternsheets for running, keeping his weight right where it needs to be.

And because the centerboard is designed so that it does not intrude on the helmsman’s space (after experiencing this, I’ll never accept a cruising boat without it), it is VERY easy to switch sides when tacking and gybing. This is something you’ll do hundreds of times (if not thousands) aboard a cruising dinghy, and it is a simple and enjoyable move every time on the Phoenix III.

All in all, I haven’t seen a boat I like better for sail-and-oar cruising. I doubt I ever will.